
Chapter 10. Neural Networks
“You can’t process me with a normal brain.”

— Charlie Sheen

We’re at the end of our story. This is the last official chapter of this book (though I

envision additional supplemental material for the website and perhaps new chapters in

the future). We began with inanimate objects living in a world of forces and gave those

objects desires, autonomy, and the ability to take action according to a system of rules.

Next, we allowed those objects to live in a population and evolve over time. Now we ask:

What is each object’s decision-making process? How can it adjust its choices by learning

over time? Can a computational entity process its environment and generate a decision?

The human brain can be described as a biological neural network—an interconnected web

of neurons transmitting elaborate patterns of electrical signals. Dendrites receive input

signals and, based on those inputs, fire an output signal via an axon. Or something like

that. How the human brain actually works is an elaborate and complex mystery, one that

we certainly are not going to attempt to tackle in rigorous detail in this chapter.

The good news is that developing engaging animated systems with code does not require

scientific rigor or accuracy, as we’ve learned throughout this book. We can simply be

inspired by the idea of brain function.

In this chapter, we’ll begin with a conceptual overview of the properties and features of

neural networks and build the simplest possible example of one (a network that consists

of a single neuron). Afterwards, we’ll examine strategies for creating a “Brain” object that

can be inserted into our Vehicle class and used to determine steering. Finally, we’ll also

look at techniques for visualizing and animating a network of neurons.
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10.1 Artificial Neural Networks: Introduction and
Application

Computer scientists have long been inspired by the human brain. In 1943, Warren S.

McCulloch, a neuroscientist, and Walter Pitts, a logician, developed the first conceptual

model of an artificial neural network. In their paper, "A logical calculus of the ideas

imminent in nervous activity,” they describe the concept of a neuron, a single cell living in

a network of cells that receives inputs, processes those inputs, and generates an output.

Their work, and the work of many scientists and researchers that followed, was not meant

to accurately describe how the biological brain works. Rather, an artificial neural network

(which we will now simply refer to as a “neural network”) was designed as a

computational model based on the brain to solve certain kinds of problems.

It’s probably pretty obvious to you that there are problems that are incredibly simple for a

computer to solve, but difficult for you. Take the square root of 964,324, for example. A

quick line of code produces the value 982, a number Processing computed in less than a

millisecond. There are, on the other hand, problems that are incredibly simple for you or

me to solve, but not so easy for a computer. Show any toddler a picture of a kitten or

puppy and they’ll be able to tell you very quickly which one is which. Say hello and shake

my hand one morning and you should be able to pick me out of a crowd of people the next

day. But need a machine to perform one of these tasks? Scientists have already spent

entire careers researching and implementing complex solutions.

The most common application of neural networks in computing today is to perform one of

these “easy-for-a-human, difficult-for-a-machine” tasks, often referred to as pattern

recognition. Applications range from optical character recognition (turning printed or

handwritten scans into digital text) to facial recognition. We don’t have the time or need

to use some of these more elaborate artificial intelligence algorithms here, but if you are

interested in researching neural networks, I’d recommend the books Artificial
Intelligence: A Modern Approach by Stuart J. Russell and Peter Norvig and AI for Game
Developers by David M. Bourg and Glenn Seemann.

A neural network is a “connectionist” computational system. The computational systems

we write are procedural; a program starts at the first line of code, executes it, and goes on

to the next, following instructions in a linear fashion. A true neural network does not

follow a linear path. Rather, information is processed collectively, in parallel throughout a

network of nodes (the nodes, in this case, being neurons).



Here we have yet another example of a

complex system, much like the ones we

examined in Chapters 6, 7, and 8. The

individual elements of the network, the

neurons, are simple. They read an input,

process it, and generate an output. A

network of many neurons, however, can

exhibit incredibly rich and intelligent

behaviors.

One of the key elements of a neural network

is its ability to learn. A neural network is

not just a complex system, but a complex adaptive system, meaning it can change its

internal structure based on the information flowing through it. Typically, this is achieved

through the adjusting of weights. In the diagram above, each line represents a connection

between two neurons and indicates the pathway for the flow of information. Each

connection has a weight, a number that controls the signal between the two neurons. If

the network generates a “good” output (which we’ll define later), there is no need to adjust

the weights. However, if the network generates a “poor” output—an error, so to speak—

then the system adapts, altering the weights in order to improve subsequent results.

There are several strategies for learning, and we’ll examine two of them in this chapter.

Supervised Learning —Essentially, a strategy that involves a teacher that is

smarter than the network itself. For example, let’s take the facial recognition

example. The teacher shows the network a bunch of faces, and the teacher already

knows the name associated with each face. The network makes its guesses, then the

teacher provides the network with the answers. The network can then compare its

answers to the known “correct” ones and make adjustments according to its errors.

Our first neural network in the next section will follow this model.

Unsupervised Learning —Required when there isn’t an example data set with

known answers. Imagine searching for a hidden pattern in a data set. An application

of this is clustering, i.e. dividing a set of elements into groups according to some

unknown pattern. We won’t be looking at any examples of unsupervised learning in

this chapter, as this strategy is less relevant for our examples.

Reinforcement Learning —A strategy built on observation. Think of a little mouse

running through a maze. If it turns left, it gets a piece of cheese; if it turns right, it
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receives a little shock. (Don’t worry, this is just a pretend mouse.) Presumably, the

mouse will learn over time to turn left. Its neural network makes a decision with an

outcome (turn left or right) and observes its environment (yum or ouch). If the

observation is negative, the network can adjust its weights in order to make a

different decision the next time. Reinforcement learning is common in robotics. At

time t, the robot performs a task and observes the results. Did it crash into a wall or

fall off a table? Or is it unharmed? We’ll look at reinforcement learning in the context

of our simulated steering vehicles.

This ability of a neural network to learn, to make adjustments to its structure over time, is

what makes it so useful in the field of artificial intelligence. Here are some standard uses

of neural networks in software today.

Pattern Recognition —We’ve mentioned this several times already and it’s

probably the most common application. Examples are facial recognition, optical

character recognition, etc.

Time Series Prediction —Neural networks can be used to make predictions. Will

the stock rise or fall tomorrow? Will it rain or be sunny?

Signal Processing —Cochlear implants and hearing aids need to filter out

unnecessary noise and amplify the important sounds. Neural networks can be trained

to process an audio signal and filter it appropriately.

Control —You may have read about recent research advances in self-driving cars.

Neural networks are often used to manage steering decisions of physical vehicles (or

simulated ones).

Soft Sensors —A soft sensor refers to the process of analyzing a collection of many

measurements. A thermometer can tell you the temperature of the air, but what if you

also knew the humidity, barometric pressure, dewpoint, air quality, air density, etc.?

Neural networks can be employed to process the input data from many individual

sensors and evaluate them as a whole.

Anomaly Detection —Because neural networks are so good at recognizing

patterns, they can also be trained to generate an output when something occurs that

doesn’t fit the pattern. Think of a neural network monitoring your daily routine over

a long period of time. After learning the patterns of your behavior, it could alert you

when something is amiss.



This is by no means a comprehensive list of applications of neural networks. But hopefully

it gives you an overall sense of the features and possibilities. The thing is, neural networks

are complicated and difficult. They involve all sorts of fancy mathematics. While this is all

fascinating (and incredibly important to scientific research), a lot of the techniques are

not very practical in the world of building interactive, animated Processing sketches. Not

to mention that in order to cover all this material, we would need another book—or more

likely, a series of books.

So instead, we’ll begin our last hurrah in the nature of code with the simplest of all neural

networks, in an effort to understand how the overall concepts are applied in code. Then

we’ll look at some Processing sketches that generate visual results inspired by these

concepts.

10.2 The Perceptron

Invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory, a

perceptron is the simplest neural network possible: a computational model of a single

neuron. A perceptron consists of one or more inputs, a processor, and a single output.

A perceptron follows the “feed-forward” model, meaning inputs are sent into the neuron,

are processed, and result in an output. In the diagram above, this means the network (one

neuron) reads from left to right: inputs come in, output goes out.

Let’s follow each of these steps in more detail.

Step 1: Receive inputs.

Say we have a perceptron with two inputs—let’s call them x1 and x2.

Input 0: x1 = 12



Input 1: x2 = 4

Figure 10.3: The perceptron
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Step 2: Weight inputs.

Each input that is sent into the neuron must first be weighted, i.e. multiplied by some

value (often a number between -1 and 1). When creating a perceptron, we’ll typically begin

by assigning random weights. Here, let’s give the inputs the following weights:

Weight 0: 0.5



Weight 1: -1

We take each input and multiply it by its weight.

Input 0 * Weight 0 ⇒ 12 * 0.5 = 6

Input 1 * Weight 1 ⇒ 4 * -1 = -4

Step 3: Sum inputs.

The weighted inputs are then summed.

Sum = 6 + -4 = 2

Step 4: Generate output.

The output of a perceptron is generated by passing that sum through an activation

function. In the case of a simple binary output, the activation function is what tells the

perceptron whether to “fire” or not. You can envision an LED connected to the output

signal: if it fires, the light goes on; if not, it stays off.

Activation functions can get a little bit hairy. If you start reading one of those artificial

intelligence textbooks looking for more info about activation functions, you may soon find

yourself reaching for a calculus textbook. However, with our friend the simple perceptron,

we’re going to do something really easy. Let’s make the activation function the sign of the

sum. In other words, if the sum is a positive number, the output is 1; if it is negative, the

output is -1.

Output = sign(sum) ⇒ sign(2) ⇒ +1

Let’s review and condense these steps so we can implement them with a code snippet.
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The Perceptron Algorithm:

1. For every input, multiply that input by its weight.

2. Sum all of the weighted inputs.

3. Compute the output of the perceptron based on that sum passed through an

activation function (the sign of the sum).

Let’s assume we have two arrays of numbers, the inputs and the weights. For example:

“For every input” implies a loop that multiplies each input by its corresponding weight.

Since we need the sum, we can add up the results in that very loop.

Once we have the sum we can compute the output.

10.3 Simple Pattern Recognition Using a Perceptron

Now that we understand the computational process of a perceptron, we can look at an

example of one in action. We stated that neural networks are often used for pattern

recognition applications, such as facial recognition. Even simple perceptrons can

demonstrate the basics of classification, as in the following example.

Consider a line in two-dimensional space. Points in that space can be classified as living

on either one side of the line or the other. While this is a somewhat silly example (since

there is clearly no need for a neural network; we can determine on which side a point lies


      float[] inputs = {12 , 4};
   float[] weights = {0.5,-1};

Steps 1 and 2: Add up all the weighted inputs.







   float sum = 0;
         for (int i = 0; i < inputs.length; i++) {

    sum += inputs[i]*weights[i];
}

Step 3: Passing the sum
through an activation
function


   float output = activate(sum);

 

The activation function   int activate(float sum) {

Return a 1 if positive, -1 if negative.
       if (sum > 0) return 1;
    else return -1;

}
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with some simple algebra), it shows how a

perceptron can be trained to recognize

points on one side versus another.

Let’s say a perceptron has 2 inputs (the x-

and y-coordinates of a point). Using a sign

activation function, the output will either

be -1 or 1—i.e., the input data is classified

according to the sign of the output. In the

above diagram, we can see how each point is either below the line (-1) or above (+1).

The perceptron itself can be diagrammed as follows:

We can see how there are two inputs (x and y), a weight for each input (weightx and

weighty), as well as a processing neuron that generates the output.

There is a pretty significant problem here, however. Let’s consider the point (0,0). What if

we send this point into the perceptron as its input: x = 0 and y = 0? What will the sum of

its weighted inputs be? No matter what the weights are, the sum will always be 0! But this

can’t be right—after all, the point (0,0) could certainly be above or below various lines in

our two-dimensional world.

To avoid this dilemma, our perceptron will require a third input, typically referred to as a

bias input. A bias input always has the value of 1 and is also weighted. Here is our

perceptron with the addition of the bias:

Figure 10.4

Figure 10.5
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Let’s go back to the point (0,0). Here are our inputs:

0 * weight for x = 0



0 * weight for y = 0



1 * weight for bias = weight for bias

The output is the sum of the above three values, 0 plus 0 plus the bias’s weight. Therefore,

the bias, on its own, answers the question as to where (0,0) is in relation to the line. If the

bias’s weight is positive, (0,0) is above the line; negative, it is below. It “biases” the

perceptron’s understanding of the line’s position relative to (0,0).

10.4 Coding the Perceptron

We’re now ready to assemble the code for a Perceptron class. The only data the perceptron

needs to track are the input weights, and we could use an array of floats to store these.

The constructor could receive an argument indicating the number of inputs (in this case

three: x, y, and a bias) and size the array accordingly.

Figure 10.6


  class Perceptron {
   float[] weights;






    Perceptron(int n) {
       weights = new float[n];
             for (int i = 0; i < weights.length; i++) {

The weights are picked randomly to start.





        weights[i] = random(-1,1);

    }
  }
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A perceptron needs to be able to receive inputs and generate an output. We can package

these requirements into a function called feedforward(). In this example, we’ll have the

perceptron receive its inputs as an array (which should be the same length as the array of

weights) and return the output as an integer.

Presumably, we could now create a Perceptron object and ask it to make a guess for any

given point.

Did the perceptron get it right? At this point, the perceptron has no better than a 50/50

chance of arriving at the right answer. Remember, when we created it, we gave each

weight a random value. A neural network isn’t magic. It’s not going to be able to guess

anything correctly unless we teach it how to!

To train a neural network to answer correctly, we’re going to employ the method of

supervised learning that we described in section 10.1.











     int feedforward(float[] inputs) {
       float sum = 0;
             for (int i = 0; i < weights.length; i++) {
        sum += inputs[i]*weights[i];
    }

Result is the sign of the sum, -1 or +1.
Here the
perceptron is making a guess.
Is it on one side of the
line or the other?


     return activate(sum);

  }

Figure 10.7

Create the Perceptron.    Perceptron p = new Perceptron(3);

The input is 3 values: x,y and bias.   float[] point = {50,-12,1};

The answer!   int result = p.feedforward(point);
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With this method, the network is provided with inputs for which there is a known answer.

This way the network can find out if it has made a correct guess. If it’s incorrect, the

network can learn from its mistake and adjust its weights. The process is as follows:

1. Provide the perceptron with inputs for which there is a known answer.

2. Ask the perceptron to guess an answer.

3. Compute the error. (Did it get the answer right or wrong?)

4. Adjust all the weights according to the error.

5. Return to Step 1 and repeat!

Steps 1 through 4 can be packaged into a function. Before we can write the entire function,

however, we need to examine Steps 3 and 4 in more detail. How do we define the

perceptron’s error? And how should we adjust the weights according to this error?

The perceptron’s error can be defined as the difference between the desired answer and its

guess.

ERROR = DESIRED OUTPUT - GUESS OUTPUT

The above formula may look familiar to you. In Chapter 6, we computed a steering force

as the difference between our desired velocity and our current velocity.

STEERING = DESIRED VELOCITY - CURRENT VELOCITY

This was also an error calculation. The current velocity acts as a guess and the error (the

steering force) tells us how to adjust the velocity in the right direction. In a moment, we’ll

see how adjusting the vehicle’s velocity to follow a target is just like adjusting the weights

of a neural network to arrive at the right answer.

In the case of the perceptron, the output has only two possible values: +1 or -1. This

means there are only three possible errors.

If the perceptron guesses the correct answer, then the guess equals the desired output and

the error is 0. If the correct answer is -1 and we’ve guessed +1, then the error is -2. If the

correct answer is +1 and we’ve guessed -1, then the error is +2.

Desired Guess Error
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Desired Guess Error

-1 -1 0

-1 +1 -2

+1 -1 +2

+1 +1 0

The error is the determining factor in how the perceptron’s weights should be adjusted.

For any given weight, what we are looking to calculate is the change in weight, often called

Δweight (or “delta” weight, delta being the Greek letter Δ).

NEW WEIGHT = WEIGHT + ΔWEIGHT

Δweight is calculated as the error multiplied by the input.

ΔWEIGHT = ERROR * INPUT

Therefore:

NEW WEIGHT = WEIGHT + ERROR * INPUT

To understand why this works, we can again return to steering. A steering force is

essentially an error in velocity. If we apply that force as our acceleration (Δvelocity), then

we adjust our velocity to move in the correct direction. This is what we want to do with

our neural network’s weights. We want to adjust them in the right direction, as defined by

the error.

With steering, however, we had an additional variable that controlled the vehicle’s ability

to steer: the maximum force. With a high maximum force, the vehicle was able to

accelerate and turn very quickly; with a lower force, the vehicle would take longer to

adjust its velocity. The neural network will employ a similar strategy with a variable called

the “learning constant.” We’ll add in the learning constant as follows:

NEW WEIGHT = WEIGHT + ERROR * INPUT * LEARNING CONSTANT

Notice that a high learning constant means the weight will change more drastically. This

may help us arrive at a solution more quickly, but with such large changes in weight it’s

possible we will overshoot the optimal weights. With a small learning constant, the
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weights will be adjusted slowly, requiring more training time but allowing the network to

make very small adjustments that could improve the network’s overall accuracy.

Assuming the addition of a variable c for the learning constant, we can now write a

training function for the perceptron following the above steps.

We can now see the Perceptron class as a whole.

A new variable is introduced
to control the learning
rate.


   float c = 0.01;

 

Step 1: Provide the inputs and known answer.
These
are passed in as arguments to train().


     void train(float[] inputs, int desired) {

 

Step 2: Guess according to those inputs.
     int guess = feedforward(inputs);

 

Step 3: Compute the error (difference
between
answer and guess).


       float error = desired - guess;

 

Step 4: Adjust all the weights according
to the error
and learning constant.






           for (int i = 0; i < weights.length; i++) {
          weights[i] += c * error * inputs[i];
  }

}

  class Perceptron {

The Perceptron stores its weights and learning
constants.


   float[] weights;
     float c = 0.01;






 
    Perceptron(int n) {
       weights = new float[n];

Weights start off random.




             for (int i = 0; i < weights.length; i++) {
        weights[i] = random(-1,1);
    }


  }
 

Return an output based on inputs.














     int feedforward(float[] inputs) {
       float sum = 0;
             for (int i = 0; i < weights.length; i++) {
        sum += inputs[i]*weights[i];
    }
     return activate(sum);
  }

 

Output is a +1 or -1.







     int activate(float sum) {
         if (sum > 0) return 1;
      else return -1;
  }

 

Train the network against known data.














       void train(float[] inputs, int desired) {
       int guess = feedforward(inputs);
         float error = desired - guess;
             for (int i = 0; i < weights.length; i++) {
            weights[i] += c * error * inputs[i];
    }
  }
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To train the perceptron, we need a set of inputs with a known answer. We could package

this up in a class like so:

Now the question becomes, how do we pick a point and know whether it is above or below

a line? Let’s start with the formula for a line, where y is calculated as a function of x:

y = f(x)

In generic terms, a line can be described as:

y = ax + b

Here’s a specific example:

y = 2*x + 1

We can then write a Processing function with this in mind.

So, if we make up a point:

How do we know if this point is above or below the line? The line function f(x) gives us

the y value on the line for that x position. Let’s call that yline.

}


  class Trainer {
 

A "Trainer" object stores the inputs and the correct
answer.

















   float[] inputs;

   int answer;
 
        Trainer(float x, float y, int a) {
       inputs = new float[3];
      inputs[0] = x;
      inputs[1] = y;

Note that the Trainer has the bias input built into its
array.









      inputs[2] = 1;

      answer = a;
  }
}

A function to calculate y based on x along a line




   float f(float x) {
   return 2*x+1;
}


   float x = random(width);
   float y = random(height);
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If the y value we are examining is above the line, it will be less than yline.

We can then make a Trainer object with the inputs and the correct answer.

Assuming we had a Perceptron object ptron, we could then train it by sending the inputs

along with the known answer.

Now, it’s important to remember that this is just a demonstration. Remember our

Shakespeare-typing monkeys? We asked our genetic algorithm to solve for “to be or not to

be”—an answer we already knew. We did this to make sure our genetic algorithm worked

properly. The same reasoning applies to this example. We don’t need a perceptron to tell

us whether a point is above or below a line; we can do that with simple math. We are using

this scenario, one that we can easily solve without a perceptron, to demonstrate the

perceptron’s algorithm as well as easily confirm that it is working properly.

The y position on the line   float yline = f(x);

Figure 10.8

    if (y < yline) {

The answer is -1 if y is above the line.







    answer = -1;

  } else {
    answer = 1;
}

      Trainer t = new Trainer(x, y, answer);

ptron.train(t.inputs,t.answer);
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Let’s look at how the perceptron works with an array of many training points.

Example 10.1: The Perceptron

RESET 
 PAUSE

The Perceptron Perceptron ptron;

2,000 training points





    Trainer[] training = new Trainer[2000];

   int count = 0;
 

The formula for a line




   float f(float x) {
   return 2*x+1;
}














 
  void setup() {

   size(640, 360);
 
     ptron = new Perceptron(3);
 

Make 2,000 training points.





           for (int i = 0; i < training.length; i++) {

       float x = random(-width/2,width/2);
       float y = random(-height/2,height/2);

Is the correct answer 1 or -1?
       int answer = 1;
          if (y < f(x)) answer = -1;























         training[i] = new Trainer(x, y, answer);
  }
}
 
 

  void draw() {
  background(255);
  translate(width/2,height/2);
 
   ptron.train(training[count].inputs, training[count].answer);

For animation, we are training one point at a time.










        count = (count + 1) % training.length;

 
           for (int i = 0; i < count; i++) {
    stroke(0);
       int guess = ptron.feedforward(training[i].inputs);

Show the classification—no fill for -1, black for +1.
        if (guess > 0) noFill();
               else fill(0);






       ellipse(training[i].inputs[0], training[i].inputs[1], 8, 8);
  }
}
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10.5 A Steering Perceptron

While classifying points according to their position above or below a line was a useful

demonstration of the perceptron in action, it doesn’t have much practical relevance to the

other examples throughout this book. In this section, we’ll take the concepts of a

perceptron (array of inputs, single output), apply it to steering behaviors, and

demonstrate reinforcement learning along the way.

We are now going to take significant creative license with the concept of a neural network.

This will allow us to stick with the basics and avoid some of the highly complex algorithms

associated with more sophisticated neural networks. Here we’re not so concerned with

following rules outlined in artificial intelligence textbooks—we’re just hoping to make

something interesting and brain-like.

Remember our good friend the Vehicle class? You know, that one for making objects with

a location, velocity, and acceleration? That could obey Newton’s laws with an

applyForce() function and move around the window according to a variety of steering

rules?

What if we added one more variable to our Vehicle class?

Instead of using the supervised learning model above, can you train the neural

network to find the right weights by using a genetic algorithm?

Exercise 10.1

Visualize the perceptron itself. Draw the inputs, the processing node, and the output.

Exercise 10.2


  class Vehicle {
 

Giving the vehicle a brain!












   Perceptron brain;

 
   PVector location;
   PVector velocity;
   PVector acceleration;
  //etc...
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Here’s our scenario. Let’s say we have a Processing sketch with an ArrayList of targets

and a single vehicle.

Let’s say that the vehicle seeks all of the targets. According to the principles of Chapter 6,

we would next write a function that calculates a steering force towards each target,

applying each force one at a time to the object’s acceleration. Assuming the targets are an

ArrayList of PVector objects, it would look something like:

In Chapter 6, we also examined how we could create more dynamic simulations by

weighting each steering force according to some rule. For example, we could say that the

farther you are from a target, the stronger the force.

But what if instead we could ask our brain (i.e. perceptron) to take in all the forces as an

input, process them according to weights of the perceptron inputs, and generate an output

steering force? What if we could instead say:

Figure 10.9


     void seek(ArrayList<PVector> targets) {
         for (PVector target : targets) {

For every target, apply a steering force towards the
target.









         PVector force = seek(targets.get(i));

      applyForce(force);
    }
  }











    void seek(ArrayList<PVector> targets) {
         for (PVector target : targets) {
         PVector force = seek(targets.get(i));
         float d = PVector.dist(target,location);
         float weight = map(d,0,width,0,5);

Weighting each steering force individually







      force.mult(weight);

      applyForce(force);
    }
  }
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In other words, instead of weighting and accumulating the forces inside our vehicle, we

simply pass an array of forces to the vehicle’s “brain” object and allow the brain to weight

and sum the forces for us. The output is then applied as a steering force. This opens up a

range of possibilities. A vehicle could make decisions as to how to steer on its own,

learning from its mistakes and responding to stimuli in its environment. Let’s see how this

works.

We can use the line classification perceptron as a model, with one important difference—

the inputs are not single numbers, but vectors! Let’s look at how the feedforward()

function works in our vehicle’s perceptron, alongside the one from our previous example.

Vehicle PVector inputs Line float inputs

PVector feedforward(PVector[] forces) {

  // Sum is a PVector.


  PVector sum = new PVector();

  for (int i = 0; i < weights.length; i++) {

    // Vector addition and multiplication


    forces[i].mult(weights[i]);

    sum.add(forces[i]);


  }

  // No activation function


  return sum;

}


int feedforward(float[] inputs) {

  // Sum is a float.

  float sum = 0;


  for (int i = 0; i < weights.length; i++) {

    // Scalar addition and multiplication


    sum += inputs[i]*weights[i];


  }

  // Activation function

  return activate(sum);


}


Note how these two functions implement nearly identical algorithms, with two

differences:

1. Summing PVectors. Instead of a series of numbers added together, each input is a

PVector and must be multiplied by the weight and added to a sum according to the

mathematical PVector functions.

2. No activation function. In this case, we’re taking the result and applying it

directly as a steering force for the vehicle, so we’re not asking for a simple boolean


     void seek(ArrayList<PVector> targets) {
 

Make an array of inputs for our brain.





        PVector[] forces = new PVector[targets.size()];

 
             for (int i = 0; i < forces.length; i++) {

Fill the array with a steering force
for each target.





        forces[i] = seek(targets.get(i));

    }
 

Ask our brain for a result and apply that as the force!
       PVector output = brain.process(forces);
    applyForce(output);

  }
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value that classifies it in one of two categories. Rather, we’re asking for raw output

itself, the resulting overall force.

Once the resulting steering force has been applied, it’s time to give feedback to the brain,

i.e. reinforcement learning. Was the decision to steer in that particular direction a good

one or a bad one? Presumably if some of the targets were predators (resulting in being

eaten) and some of the targets were food (resulting in greater health), the network would

adjust its weights in order to steer away from the predators and towards the food.

Let’s take a simpler example, where the vehicle simply wants to stay close to the center of

the window. We’ll train the brain as follows:

Here we are passing the brain a copy of all

the inputs (which it will need for error

correction) as well as an observation about

its environment: a PVector that points from

its current location to where it desires to

be. This PVector essentially serves as the error—the longer the PVector, the worse the

vehicle is performing; the shorter, the better.

The brain can then apply this “error” vector (which has two error values, one for x and one

for y) as a means for adjusting the weights, just as we did in the line classification

example.

Training the Vehicle Training the Line Classifier

void train(PVector[] forces, PVector error) {










  for (int i = 0; i < weights.length; i++) {

    weights[i] += c*error.x*forces[i].x;

    weights[i] += c*error.y*forces[i].y;


  }

}


void train(float[] inputs, int desired) {


  int guess = feedforward(inputs);

  float error = desired - guess;


  for (int i = 0; i < weights.length; i++) {

    weights[i] += c * error * inputs[i];


  }

}


Because the vehicle observes its own error, there is no need to calculate one; we can

simply receive the error as an argument. Notice how the change in weight is processed

twice, once for the error along the x-axis and once for the y-axis.






        PVector desired = new PVector(width/2,height/2);
        PVector error = PVector.sub(desired, location);
    brain.train(forces,error);

Figure 10.10
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We can now look at the Vehicle class and see how the steer function uses a perceptron to

control the overall steering force. The new content from this chapter is highlighted.

Example 10.2: Perceptron steering


  weights[i] += c*error.x*forces[i].x;
  weights[i] += c*error.y*forces[i].y;

RESET 
 PAUSE


  class Vehicle {
 

The Vehicle now has a brain.
   Perceptron brain;

 

Same old variables for physics









   PVector location;
   PVector velocity;
   PVector acceleration;
   float maxforce;
   float maxspeed;

 

The Vehicle creates a perceptron with n inputs and a
learning constant.






















        Vehicle(int n, float x, float y) {

       brain = new Perceptron(n,0.001);
       acceleration = new PVector(0,0);
       velocity = new PVector(0,0);
       location = new PVector(x,y);
      maxspeed = 4;
      maxforce = 0.1;
  }
 

Same old update() function












    void update() {
    velocity.add(acceleration);
    velocity.limit(maxspeed);
    location.add(velocity);
    acceleration.mult(0);
  }

 

Same old applyForce() function




     void applyForce(PVector force) {
    acceleration.add(force);
  }











 
     void steer(ArrayList<PVector> targets) {
        PVector[] forces = new PVector[targets.size()];
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10.6 It’s a “Network,” Remember?

Yes, a perceptron can have multiple inputs, but it is still a lonely neuron. The power of

neural networks comes in the networking itself. Perceptrons are, sadly, incredibly limited

in their abilities. If you read an AI textbook, it will say that a perceptron can only solve

linearly separable problems. What’s a linearly separable problem? Let’s take a look at

our first example, which determined whether points were on one side of a line or the

other.






             for (int i = 0; i < forces.length; i++) {
        forces[i] = seek(targets.get(i));
    }

All the steering forces are inputs.
       PVector result = brain.feedforward(forces);

 

The result is applied.
    applyForce(result);

 

The brain is trained according to
the distance to the
center.












        PVector desired = new PVector(width/2,height/2);

        PVector error = PVector.sub(desired, location);
    brain.train(forces,error);
 
  }
 
 

Same old seek() function

















     PVector seek(PVector target) {
       PVector desired = PVector.sub(target,location);
    desired.normalize();
    desired.mult(maxspeed);
       PVector steer = PVector.sub(desired,velocity);
    steer.limit(maxforce);
     return steer;
  }


 
}

Visualize the weights of the network. Try mapping each target’s corresponding weight

to its brightness.

Exercise 10.3

Try different rules for reinforcement learning. What if some targets are desirable and

some are undesirable?

Exercise 10.4
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On the left of Figure 10.11, we have classic linearly separable data. Graph all of the

possibilities; if you can classify the data with a straight line, then it is linearly separable.

On the right, however, is non-linearly separable data. You can’t draw a straight line to

separate the black dots from the gray ones.

One of the simplest examples of a non-linearly separable problem is XOR, or “exclusive

or.” We’re all familiar with AND. For A AND B to be true, both A and B must be true. With

OR, either A or B can be true for A OR B to evaluate as true. These are both linearly

separable problems. Let’s look at the solution space, a “truth table.”

See how you can draw a line to separate the true outputs from the false ones?

XOR is the equivalent of OR and NOT AND. In other words, A XOR B only evaluates to

true if one of them is true. If both are false or both are true, then we get false. Take a look

at the following truth table.

Figure 10.11

Figure 10.12



This is not linearly separable. Try to draw a straight line to separate the true outputs from

the false ones—you can’t!

So perceptrons can’t even solve something as simple as XOR. But what if we made a

network out of two perceptrons? If one perceptron can solve OR and one perceptron can

solve NOT AND, then two perceptrons combined can solve XOR.

The above diagram is known as a multi-layered perceptron, a network of many neurons.

Some are input neurons and receive the inputs, some are part of what’s called a “hidden”

layer (as they are connected to neither the inputs nor the outputs of the network directly),

and then there are the output neurons, from which we read the results.

Training these networks is much more complicated. With the simple perceptron, we could

easily evaluate how to change the weights according to the error. But here there are so

many different connections, each in a different layer of the network. How does one know

how much each neuron or connection contributed to the overall error of the network?

The solution to optimizing weights of a multi-layered network is known as

backpropagation. The output of the network is generated in the same manner as a

perceptron. The inputs multiplied by the weights are summed and fed forward through the

Figure 10.13
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network. The difference here is that they pass through additional layers of neurons before

reaching the output. Training the network (i.e. adjusting the weights) also involves taking

the error (desired result - guess). The error, however, must be fed backwards through the

network. The final error ultimately adjusts the weights of all the connections.

Backpropagation is a bit beyond the scope of this book and involves a fancier activation

function (called the sigmoid function) as well as some basic calculus. If you are interested

in how backpropagation works, check the book website (and GitHub repository) for an

example that solves XOR using a multi-layered feed forward network with

backpropagation.

Instead, here we’ll focus on a code framework for building the visual architecture of a

network. We’ll make Neuron objects and Connection objects from which a Network object

can be created and animated to show the feed forward process. This will closely resemble

some of the force-directed graph examples we examined in Chapter 5 (toxiclibs).

10.7 Neural Network Diagrams

Our goal will be to create the following simple network diagram:

The primary building block for this diagram is a neuron. For the purpose of this example,

the Neuron class describes an entity with an (x,y) location.

Figure 10.15

An incredibly simple Neuron class stores and
displays the location of a single neuron.






















  class Neuron {

   PVector location;
 
      Neuron(float x, float y) {
        location = new PVector(x, y);
  }
 
    void display() {



The Network class can then manage an ArrayList of neurons, as well as have its own

location (so that each neuron is drawn relative to the network’s center). This is particle

systems 101. We have a single element (a neuron) and a network (a “system” of many

neurons).

Now we can pretty easily make the diagram above.











    stroke(0);
    fill(0);
       ellipse(location.x, location.y, 16, 16);
  }
}

A Network is a list of neurons.
  class Network {
   ArrayList<Neuron> neurons;
















   PVector location;
 
      Network(float x, float y) {
       location = new PVector(x,y);
       neurons = new ArrayList<Neuron>();
  }
 

We can add an neuron to the network.




     void addNeuron(Neuron n) {
    neurons.add(n);
  }

 

We can draw the entire network.

















    void display() {
    pushMatrix();
     translate(location.x, location.y);
         for (Neuron n : neurons) {
      n.display();
    }
    popMatrix();
  }

}









 Network network;
 

  void setup() {
   size(640, 360);

Make a Network.
     network = new Network(width/2,height/2);

 

Make the Neurons.






      Neuron a = new Neuron(-200,0);
      Neuron b = new Neuron(0,100);
      Neuron c = new Neuron(0,-100);
      Neuron d = new Neuron(200,0);

 

Add the Neurons to the network.






  network.addNeuron(a);
  network.addNeuron(b);
  network.addNeuron(c);
  network.addNeuron(d);





}
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The above yields:

What’s missing, of course, is the connection. We can consider a Connection object to be

made up of three elements, two neurons (from Neuron a to Neuron b) and a weight.

Once we have the idea of a Connection object, we can write a function (let’s put it inside

the Network class) that connects two neurons together—the goal being that in addition to

making the neurons in setup(), we can also connect them.


  void draw() {
  background(255);

Show the network.
  network.display();

}

  class Connection {

A connection is between two neurons.
   Neuron a;
   Neuron b;

A connection has a weight.

















   float weight;

 
       Connection(Neuron from, Neuron to,float w) {
      weight = w;
      a = from;
      b = to;
  }
 

A connection is drawn as a line.












    void display() {

    stroke(0);
    strokeWeight(weight*4);
       line(a.location.x, a.location.y, b.location.x, b.location.y);
  }
}


















  void setup() {
   size(640, 360);
     network = new Network(width/2,height/2);
 
      Neuron a = new Neuron(-200,0);
      Neuron b = new Neuron(0,100);
      Neuron c = new Neuron(0,-100);
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The Network class therefore needs a new function called connect(), which makes a

Connection object between the two specified neurons.

Presumably, we might think that the Network should store an ArrayList of connections,

just like it stores an ArrayList of neurons. While useful, in this case such an ArrayList is

not necessary and is missing an important feature that we need. Ultimately we plan to

“feed forward" the neurons through the network, so the Neuron objects themselves must

know to which neurons they are connected in the “forward” direction. In other words,

each neuron should have its own list of Connection objects. When a connects to b, we want

a to store a reference of that connection so that it can pass its output to b when the time

comes.

In some cases, we also might want Neuron b to know about this connection, but in this

particular example we are only going to pass information in one direction.

For this to work, we have to add an ArrayList of connections to the Neuron class. Then we

implement the addConnection() function that stores the connection in that ArrayList.


      Neuron d = new Neuron(200,0);
 

Making connections between the neurons




















  network.connect(a,b);

  network.connect(a,c);
  network.connect(b,d);
  network.connect(c,d);
 
  network.addNeuron(a);
  network.addNeuron(b);
  network.addNeuron(c);
  network.addNeuron(d);
}

       void connect(Neuron a, Neuron b) {

Connection has a random weight.







          Connection c = new Connection(a, b, random(1));

 
    // But what do we do with the Connection object?
  }









       void connect(Neuron a, Neuron b) {
          Connection c = new Connection(a, b, random(1));
    a.addConnection(c);
  }






  class Neuron {
   PVector location;
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The neuron’s display() function can draw the connections as well. And finally, we have

our network diagram.

Example 10.3: Neural network diagram

10.8 Animating Feed Forward

An interesting problem to consider is how to visualize the flow of information as it travels

throughout a neural network. Our network is built on the feed forward model, meaning

that an input arrives at the first neuron (drawn on the lefthand side of the window) and

The neuron stores its connections.















   ArrayList<Connection> connections;

 
      Neuron(float x, float y) {
        location = new PVector(x, y);
       connections = new ArrayList<Connection>();
  }
 

Adding a connection to this neuron




     void addConnection(Connection c) {
    connections.add(c);
  }

RESET 
 PAUSE














    void display() {
    stroke(0);
    strokeWeight(1);
    fill(0);
       ellipse(location.x, location.y, 16, 16);
 

Drawing all the connections




         for (Connection c : connections) {
      c.display();
    }


  }
}
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the output of that neuron flows across the connections to the right until it exits as output

from the network itself.

Our first step is to add a function to the network to receive this input, which we’ll make a

random number between 0 and 1.

The network, which manages all the neurons, can choose to which neurons it should apply

that input. In this case, we’ll do something simple and just feed a single input into the first

neuron in the ArrayList, which happens to be the left-most one.

What did we do? Well, we made it necessary to add a function called feedforward() in the

Neuron class that will receive the input and process it.

If you recall from working with our perceptron, the standard task that the processing unit

performs is to sum up all of its inputs. So if our Neuron class adds a variable called sum, it

can simply accumulate the inputs as they are received.

  void setup() {

All our old network set up code
 

 

A new function to send in an input
  network.feedforward(random(1));

}


  class Network {
 

A new function to feed an input into the neuron







     void feedforward(float input) {
       Neuron start = neurons.get(0);
    start.feedforward(input);
  }






 class Neuron
 
     void feedforward(float input) {

What do we do with the input?
 

  }











 class Neuron
 
     int sum = 0;
 
     void feedforward(float input) {

Accumulate the sums.
      sum += input;

  }
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The neuron can then decide whether it should “fire,” or pass an output through any of its

connections to the next layer in the network. Here we can create a really simple activation

function: if the sum is greater than 1, fire!

Now, what do we do in the fire() function? If you recall, each neuron keeps track of its

connections to other neurons. So all we need to do is loop through those connections and

feedforward() the neuron’s output. For this simple example, we’ll just take the neuron’s

sum variable and make it the output.

Here’s where things get a little tricky. After all, our job here is not to actually make a

functioning neural network, but to animate a simulation of one. If the neural network

were just continuing its work, it would instantly pass those inputs (multiplied by the

connection’s weight) along to the connected neurons. We’d say something like:

But this is not what we want. What we want to do is draw something that we can see

traveling along the connection from Neuron a to Neuron b.

Let’s first think about how we might do that. We know the location of Neuron a; it’s the

PVector a.location. Neuron b is located at b.location. We need to start something moving

from Neuron a by creating another PVector that will store the path of our traveling data.


    void feedforward(float input) {
      sum += input;

Activate the neuron and fire the outputs?
        if (sum > 1) {

      fire();

If we’ve fired off our output,
we can reset our sum to
0.







        sum = 0;

    }
  }


    void fire() {
         for (Connection c : connections) {

The Neuron sends the sum out
through all of its
connections







      c.feedforward(sum);

    }
  }











  class Connection {
 
     void feedforward(float val) {
    b.feedforward(val*weight);
  }

     PVector sender = a.location.get();
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Once we have a copy of that location, we can use any of the motion algorithms that we’ve

studied throughout this book to move along this path. Here—let’s pick something very

simple and just interpolate from a to b.

Along with the connection’s line, we can then draw a circle at that location:

This resembles the following:

OK, so that’s how we might move something along the connection. But how do we know

when to do so? We start this process the moment the Connection object receives the

“feedforward” signal. We can keep track of this process by employing a simple boolean to

know whether the connection is sending or not. Before, we had:

Now, instead of sending the value on straight away, we’ll trigger an animation:

Notice how our Connection class now needs three new variables. We need a boolean

“sending” that starts as false and that will track whether or not the connection is actively


      sender.x = lerp(sender.x, b.location.x, 0.1);
      sender.y = lerp(sender.y, b.location.y, 0.1);









  stroke(0);
     line(a.location.x, a.location.y, b.location.x, b.location.y);
  fill(0);
     ellipse(sender.x, sender.y, 8, 8);

Figure 10.16






     void feedforward(float val) {
    b.feedforward(val*weight);
  }
















  class Connection {
 
     boolean sending = false;
   PVector sender;
   float output;
 
     void feedforward(float val) {

Sending is now true.      sending = true;

Start the animation at the location of Neuron A.      sender = a.location.get();

Store the output for when it is actually time to feed it
forward.


      output = val*weight;

  }
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sending (i.e. animating). We need a PVector “sender” for the location where we’ll draw the

traveling dot. And since we aren’t passing the output along this instant, we’ll need to store

it in a variable that will do the job later.

The feedforward() function is called the moment the connection becomes active. Once it’s

active, we’ll need to call another function continuously (each time through draw()), one

that will update the location of the traveling data.

We’re missing a key element, however. We need to check if the sender has arrived at

location b, and if it has, feed forward that output to the next neuron.

Let’s look at the Connection class all together, as well as our new draw() function.

Example 10.4: Animating a neural network diagram


   void update() {
      if (sending) {

As long as we’re sending, interpolate our points.
          sender.x = lerp(sender.x, b.location.x, 0.1);
          sender.y = lerp(sender.y, b.location.y, 0.1);


    }
  }











    void update() {
      if (sending) {
          sender.x = lerp(sender.x, b.location.x, 0.1);
          sender.y = lerp(sender.y, b.location.y, 0.1);
 

How far are we from neuron b?
          float d = PVector.dist(sender, b.location);

 

If we’re close enough (within one pixel) pass on the
output. Turn off sending.














          if (d < 1) {

        b.feedforward(output);
          sending = false;
      }
    }
  }

RESET 
 PAUSE
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  void draw() {
  background(255);

The Network now has a new update() method that
updates all of the Connection objects.









  network.update();

  network.display();
 
        if (frameCount % 30 == 0) {

We are choosing to send in an input every 30 frames.









    network.feedforward(random(1));

  }
}
 

  class Connection {

The Connection’s data







   float weight;

   Neuron a;
   Neuron b;
 

Variables to track the animation






















     boolean sending = false;

   PVector sender;
     float output = 0;
 
        Connection(Neuron from, Neuron to, float w) {
      weight = w;
      a = from;
      b = to;
  }
 

The Connection is active with data traveling from a to
b.














     void feedforward(float val) {

      output = val*weight;
      sender = a.location.get();
      sending = true;
  }
 

Update the animation if it is sending.



























    void update() {

      if (sending) {
          sender.x = lerp(sender.x, b.location.x, 0.1);
          sender.y = lerp(sender.y, b.location.y, 0.1);
          float d = PVector.dist(sender, b.location);
          if (d < 1) {
        b.feedforward(output);
          sending = false;
      }
    }
  }
 

Draw the connection as a line and traveling circle.



























    void display() {

    stroke(0);
    strokeWeight(1+weight*4);
       line(a.location.x, a.location.y, b.location.x, b.location.y);
 
      if (sending) {
      fill(0);
      strokeWeight(1);
         ellipse(sender.x, sender.y, 16, 16);
    }
  }
}

The network in the above example was manually configured by setting the location of

Exercise 10.5
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p y g y g

each neuron and its connections with hard-coded values. Rewrite this example to

generate the network’s layout via an algorithm. Can you make a circular network

diagram? A random one? An example of a multi-layered network is below.

RESET 
 PAUSE

Rewrite the example so that each neuron keeps track of its forward and backward

connections. Can you feed inputs through the network in any direction?

Exercise 10.6

Instead of lerp(), use moving bodies with steering forces to visualize the flow of

information in the network.

Exercise 10.7



The Ecosystem Project

Step 10 Exercise:

Try incorporating the concept of a “brain” into your creatures.

Use reinforcement learning in the creatures’ decision-making process.

Create a creature that features a visualization of its brain as part of its design

(even if the brain itself is not functional).

Can the ecosystem as a whole emulate the brain? Can elements of the

environment be neurons and the creatures act as inputs and outputs?

The end

If you’re still reading, thank you! You’ve reached the end of the book. But for as much

material as this book contains, we’ve barely scratched the surface of the world we inhabit

and of techniques for simulating it. It’s my intention for this book to live as an ongoing

project, and I hope to continue adding new tutorials and examples to the book’s website as

well as expand and update the printed material. Your feedback is truly appreciated, so

please get in touch via email at (daniel@shiffman.net) or by contributing to the GitHub

repository, in keeping with the open-source spirit of the project. Share your work. Keep in

touch. Let’s be two with nature.

https://natureofcode.com/
http://github.com/shiffman/The-Nature-of-Code/
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